A study of (3+1)-dimensional generalized Korteweg-de Vries- Zakharov-Kuznetsov equation via Lie symmetry approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Lie Symmetry Analysis and Exact Solutions of General Time Fractional Fifth-order Korteweg-de Vries Equation

In this paper, using the Lie group analysis method, we study the invariance properties of the general time fractional fifth-order Korteweg-de Vries (KdV) equation. A systematic research to derive Lie point symmetries of the equation is performed. In the sense of point symmetry, all of the geometric vector fields and the symmetry reductions of the equation are obtained, the exact power series so...

متن کامل

Symmetry properties of a generalized Korteweg-de Vries equation and some explicit solutions

The symmetry group method is applied to a generalized Korteweg-de Vries equation and several classes of group invariant solutions for it are obtained by means of this technique. Polynomial, trigonometric, and elliptic function solutions can be calculated. It is shown that this generalized equation can be reduced to a first-order equation under a particular second-order differential constraint w...

متن کامل

Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation

In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.

متن کامل

The Generalized Korteweg-de Vries Equation on the Half Line

The initial-boundary value problem for the generalized Korteweg-de Vries equation on a half-line is studied by adapting the initial value techniques developed by Kenig, Ponce and Vega and Bourgain to the initial-boundary setting. The approach consists of replacing the initial-boundary problem by a forced initial value problem. The forcing is selected to satisfy the boundary condition by inverti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Physics

سال: 2020

ISSN: 2211-3797

DOI: 10.1016/j.rinp.2020.103197